Semiparametric Estimation of a Heteroskedastic Sample Selection Model Author(s):
نویسندگان
چکیده
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.
منابع مشابه
sphet: Spatial Models with Heteroskedastic Innovations in R
This introduction to the R package sphet is a (slightly) modified version of Piras (2010), published in the Journal of Statistical Software. sphet is a package for estimating and testing spatial models with heteroskedastic innovations. We implement recent generalized moments estimators and semiparametric methods for the estimation of the coefficients variance-covariance matrix. This paper is a ...
متن کاملTesting Exclusion Restrictions at Infinity in the Semiparametric Selection Model
Testing Exclusion Restrictions at Infinity in the Semiparametric Selection Model The control function in the semiparametric selection model is zero at infinity. This paper proposes additional restrictions of the same type and shows how to use them to test assumed exclusion restrictions necessary for root N estimation of the model. The test is based on the estimated control function and its deri...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملModelling financial time series with SEMIFAR-GARCH model
A class of semiparametric fractional autoregressive GARCH models (SEMIFARGARCH), which includes deterministic trends, difference stationarity and stationarity with shortand long-range dependence, and heteroskedastic model errors, is very powerful for modelling financial time series. This paper discusses the model fitting, including an efficient algorithm and parameter estimation of GARCH error ...
متن کاملSemiparametric Efficient and Robust Estimation of an Unknown Symmetric Population Under Arbitrary Sample Selection Bias
We propose semiparametric methods to estimate the center and shape of a symmetric population when a representative sample of the population is unavailable due to selection bias. We allow an arbitrary sample selection mechanism determined by the data collection procedure, and we do not impose any parametric form on the population distribution. Under this general framework, we construct a family ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007